| A New Era in Operating Rooms with Artificial Intelligence:

AI-POWERED SURGICAL ASSISTANT SOLUTION

artech

CHALLENGES WE FACE

crtech art of technology OI

Manual documentation

Time loss, higher risk of errors, surgeons' attention diverted from the procedure

Lack of real-time decision support

No systematic support at critical moments

Insufficient integration

Disconnected HIS, PACS, EHR and devices

Language & > procedure

Misalignment in multinational and multi-specialty teams

CURRENT METHODS AND THEIR LIMITATIONS

cartech Q2

Manual note-taking & reporting

Time-consuming, high risk of errors

Limited voice command systems

Only basic device control, no contextual awareness

Passive use of video data

Recording exists, but no contribution to analytics, reporting, or training

Common problem

Lack of real-time andcontextual Support

KPIS WE AIM TO IMPROVE

Operational efficiency

> Documentation time is reduced

Error rate

Critical risks are minimized

Time management

Reporting becomes faster

Surgical quality & consistency

More standardized and reliable outcomes

Patient safety & satisfaction

Higher perceived quality and sense of trust

DEVELOPMENT OF THE SOLUTION

cartech O4

Al-powered surgical assistant

Developed by in-house teams

Surgeons & OR staff

Actively involved in the development process

AI models

Trained specifically for different procedures

Data security & regulatory compliance

Treated as a top priority during development

Result

A user-centric solution that is both technically robust and clinically aligned

AITECHNOLOGIES USED

Voice models

Transcription aligned with medical terminology

Vision models

> Detection of critical moments from camera feeds

Large Language Models (LLMs)

Summarization, reporting, and documentation support

Integrated system

A digital assistant working alongside the surgeon

DATA SOURCES AND TRAINING PROCESS

Audio data

Open-source, cleaned, and manually transcribed

Text data

Textbooks, academic articles, and scientific literature

Image/video data

Academic + synthetic datasets

Training duration

> 1-15 days (depending on the model)

Model performance Evaluated using dedicated test sets & medical exam (TUS) questions

0000000 0111100010 10000000

TECHNICAL CHALLENGES WE FACED

artech O 7

Data quality

Noise & echo mitigated with advanced signal processing

Terminology alignment

Re-trained with domain-specific data

Real-time performance SPU/CPU optimization, quantization, pruning

Data security

SDPR & HIPAA-compliant anonymization implemented

Hallucination issue

Reduced through prompt engineering

PILOT STUDIES & PREPARATION PHASE

artech 08

Pilot infrastructure

Completed; preparations for clinical phase are ongoing

Ethics approval

Process is in its final stage

Collaboration

Pilot deployment planned with Akdeniz University

First steps

Clinical data access, ethics approval, controlled tests

CONTRIBUTIONS ACHIEVED

Innovation culture

Strengthened within the company

Data-driven mindset

Extended to other projects

R&D processes

Adopted a more clinically focused approach

alignment

Regulatory \ Increased awareness of data security and compliance

SCALING & APPLICATION AREAS

Surgical specialties

Easily adaptable to different branches

Multilingual capability

Ready for international use

Beyond the OR

Post-op workflows, robotic surgery, medical education

New integration domains

HIS, PACS, IoT devices, patient monitoring systems

Academic use

Valuable data source for clinical research

VALUE ADDED TO THE INDUSTRY

Decision support

Systems are standardized

Reporting

Manual workflows replaced by automated processes

Patient safety

Critical errors prevented through proactive alerts

Multilingual use

Procedure-independent, scalable globally

Clinical improvement

Insights from surgical data drive quality & performance gains

IMPLEMENTATION PROCESS

artech 12

Pilot deployments

Limited case testing across different specialties

Validation

Tested in real surgical environments

Optimization

System refined using user feedback

INTEGRATION PLANS

Surgery management API integration with existing hospital systems

Device data

Real-time processing of camera and audio device streams

Patient records

Automatic addition of structured reports into information systems

Hardware infrastructure

Smooth processing of high-volume data

Support for surgeons

Real-time digital assistant during operations

SUSTAINABLE IMPACT

cartech 14

Economic impact

Higher efficiency, reduced costs, fewer re-operations

Social impact

Increased patient trust, reduced administrative burden, higher job satisfaction

Environmental impact

> Paperless workflows enable energy and resource savings

1-3 YEAR VISION

cartech 15

Widespread adoption

Deployment in university hospitals & private healthcare groups

Specialty-based models

Al models tailored to different surgical domains

Deep integration

Alignment with HIS, PACS, and robotic surgery platforms

Decision support

More advanced and proactive mechanisms

Beyond the OR

Expansion into post-op follow-up, clinical reporting, and medical education

artech 6

Target markets

Expansion into Europe, the Middle East, and North America

Compliance

Architecture aligned with GDPR & HIPAA standards

Strategic partnerships

Collaborations and investment initiatives

Global vision

Becoming a strong and sustainable player in the global healthcare ecosystem

CONTACT

- Website www.cizgi.net
- Address Merve Mah. Necip Fazıl Cd. No: 8 Sancaktepe / Yenidoğan İstanbul
- Phone +90 216 365 82 50
- E-mail info@cizgi.net

